Euclidean Shortest Paths - Exact or Approximate Algorithms
نویسندگان
چکیده
منابع مشابه
Algorithms for Approximate Shortest Path Queries on Weighted Polyhedral Surfaces
We consider the well known geometric problem of determining shortest paths between pairs of points on a polyhedral surface P , where P consists of triangular faces with positive weights assigned to them. The cost of a path in P is defined to be the weighted sum of Euclidean lengths of the sub-paths within each face of P . We present query algorithms that compute approximate distances and/or app...
متن کاملApproximate Euclidean shortest paths amid convex obstacles
We develop algorithms and data structures for the approximate Euclidean shortest path problem amid a set P of k convex obstacles in R and R, with a total of n faces. The running time of our algorithms is linear in n, and the size and query time of our data structure are independent of n. We follow a “core-set” based approach, i.e., we quickly compute a small sketch Q of P whose size is independ...
متن کاملFully Dynamic Algorithms for Maintaining All-Pairs Shortest Paths and Transitive Closure in Digraphs
This paper presents the first fully dynamic algorithms for maintaining all-pairs shortest paths in digraphs with positive integer weights less than b. For approximate shortest paths with an error factor of (2 + ), for any positive constant , the amortized update time isO(n2 log n= log logn); for an error factor of (1 + ) the amortized update time is O(n2 log3(bn)= 2). For exact shortest paths t...
متن کاملImproved Distributed Algorithms for Exact Shortest Paths
Computing shortest paths is one of the central problems in the theory of distributed computing. For the last few years, substantial progress has been made on the approximate single source shortest paths problem, culminating in an algorithm of Henzinger, Krinninger, and Nanongkai [STOC’16] which deterministically computes (1 + o(1))-approximate shortest paths in Õ(D + √ n) time, where D is the h...
متن کاملExact and Approximation Algorithms for Computing the Dilation Spectrum of Paths, Trees, and Cycles
Let G be a graph embedded in Euclidean space. For any two vertices of G their dilation denotes the length of a shortest connecting path in G, divided by their Euclidean distance. In this paper we study the spectrum of the dilation, over all pairs of vertices of G. For paths, trees, and cycles in 2D we present O(n) randomized algorithms that compute, for a given value κ ≥ 1, the exact number of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011